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e Motivation
e Architecture
e Performance
e Scaling
e Future work
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e 2019



ONCE UPON ATIMER

e 2019
e "Journey builders" are becoming popular
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REQUIREMENTS

Store millions/billions of concurrent timers
Expire them performantly

Minimize data loss

Integrate with the rest of our systems
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GET IN THE
HEADSPACE

e To build a timer
e Think like a timer
e Come back to the projectin a year
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BUILD OR BUY

e Sidekiq/ RabbitMQ

e General queuing systems

e We didn't need all of their features

e We didn't believe they'd scale to our needs

e Performance seemed orders of magnitude off



WE'RE BUILDING!
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Store millions/billions of concurrent timers
Expire them performantly

Minimize data loss

Integrate with the rest of our systems
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EXISTING SYSTEMS

e Rust
o Kafka
e GO
e oRPC
e Scylla (Cassandra)
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GENERIC
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ACTIONS

e What are they?

e Should be one option
e HTTP + JSON?

e oRPC requests?

e Something async
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APACHE KAFKA

e Already used
e Queueing system
e Not reliant on end-system performance
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WHAT ABOUT THE
INPUTS?

e We own the latency
e This can be synchronous
e gRPC interface



INTERFACE
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INTERNALS

e Store timers?
e Expire timers?
e Metrics?
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TIMER EXPIRY

e Write timers to Kafka
e Given gRPC server with storage
o Attempt simplicity
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e How to represent?



IT CAN'T BE THAT
SIMPLE

e How to represent?
e Avoid double-enqueuing
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tokio::time::sleep(Duration::from secs(60)).await;
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IT WAS THAT SIMPLE

for timer in timers {
if pending.insert(timer.id) {
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NUMBERS

e tokio::spawn+sleep until
e 1M timers

e 350ms

e 600 MB

e "good enough”
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e Pending timers



METRICS

e Pending timers
e Last expired
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WHAT DO WE NEED?

e High write throughput (100k/s)
» Possible but difficult with Postgres
e Simple to scale
e Simple to maintain
= Zero-downtime upgrades
e Simple queries with large result sets
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END RESULT

e We picked Scylla
e Queries inform data structure
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DATA MODELING

e Don't ask "what are the data?"

e SSTables, from Cassandra

e Ask "how will we access the data?"
» Fetch all timers about to expire



WHAT'S IN A TIMER?

create table timer.timers (

expire timestamp,
data blob,

k topic string,
k partition int,
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WHAT'S IN A TABLE?

e Note - "Scylla" may mean "Scylla & Casandra”
e Data distributed across cluster
e IN GENERAL - 1 query hits 1 node
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KEYS!

Primary Key - two parts

» Partition (1+ fields) - which node?

n Clustering (0+ fields) - where on the node?
SELECT ... WHERE ParKey = "..."
Get timers about to expire
Need to pre-bucket the data
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BUCKETING

16:48:30 bucketsto16:45:00

All timers 16:45:00t016:50:00 are in the
same bucket

Bucket alone cannot be Primary Key

UUID will be clustering key



TABLE

expire timestamp,
data blob,

k topic string,
k partition int,




TABLE

id uuid,
bucket timestamp,

PRIMARY KEY (bucket, id)




QUERY

SELECT * FROM

timer.timers
WHERE bucket = "2023-09-27 16:45:00"




QUERY

WHERE bucket = "2023-09-27 16:45:00"




BUT
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BIGGER BUT
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01090000009 00000909906 9—0 90 00
@ ® ®

10 wmins




QUERY BAD

e Querying the "active bucket" isn't good enough
e What buckets exist?

e What buckets fall within our lookahead window?
e Query all of those buckets



ANOTHER TABLE!

create table timer.buckets (
bucket timestamp,

PRIMARY KEY (bucket)




INSERTIONS

1 INSERT INTO timer.timers (bucket, expire, ...)
VALUES (16:40, 16:42);

INSERT INTO timer.buckets (bucket) VALUES (16:40);




QUERY PATTERN

SELECT bucket FROM timer.buckets;
=> 16:40, 16:45, 16:50, 16:55, 17:00...




QUERY PATTERN

SELECT FROM timer.timers WHERE bucket=16:40;

SELECT FROM timer.timers WHERE bucket=16:45;
SELECT FROM timer.timers WHERE bucket=16:50;
SELECT FROM timer.timers WHERE bucket=16:55;
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JUMPING FORWARD

Q12023

e Store billions of timers

e Expire them performantly
e Minimize data loss

e Easily integrate
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THE CASE FOR SCALING UP

e 13 billion notifications a day

m Retry on failure

= Schedule future notifications
e Handle more timers



JOURNEY BUILDERS

SMS: Blue,
shirt sale!

VQSL
Push: red : ) / SMS: red
shirt sale! woit 29h "‘o% shirt sale!

Push: lolue_ >
shirt sale!

wot 249h




External

‘thing that
creates timers

Internal

——— — — - — - - - -
|

send "he_“o" to

consumer

l«e_l lo

world

~

‘top?c "e_ve_n‘ts"

he_“o

|
:toP?Q "eVer\‘ts" @ : arpe K SQY“O\
l 12:50:10 | |
CTTTT T T L Timers buckets
—= CreateTimer N
| _ ] ] u
pininiuintaiel y hells7@ 12:50
, ] g 12:50:10
scheduler 7, GetTimers ‘*i\
ro o ,l,,;-——/—__——'\ 1| world” @
I eVeﬁ'/ IZ/ - - - == | = 13'59\'12 1q;OO
I minute ! B . U—1" 70
L e | DeleteTimer |
- — = " 1}
|—____I.W_____| % - 300&&/@ @
| pendling | 1 14:02:05
| |
1 helle” @ |
=0. |
| 125040 |, \_
: "world" e /
: 13:52:12 :
e - — o _ 1
I
kafka
——————— |
|
world | |
|




Exte_(‘nal

| serd 'hello’ to 1 cepe a seyllo
:topIc "events' @ | e __
l 12:50:10 Y ) L Timers buckets
th?nfj tho\'t Il _ _ _ _ ___ i le‘e_O\te,Tlme_rl \§§ ' “ .
creates timers —t--- T hello, @ :
%\_ T ! 12:5010 )
scheduler | SetTimers ni* 1T
|- - - - = ~ 0 1}
re ! _— ~V werdd &
| every | T — — — — — — _ | — 74 14:00
| it :Z , ||| 15202
consumer k- ;[/ - | . .
_________ 300:15&/3 (A}
hello ] pendling 14:02:05
|
world 1l "hello” @
L ‘| 12:50:10
|
1] “world” @
|| 13:52:12
L e - - - =
kocpk_o\ _____
: Topic "events' l,
[ vello | | world ||
|




Ex’temal In‘te_mal

—,— e — — — —_—— — —

:se_nd "hello" to :
| topic "events' !

I @ 135040 | grpe
L ____—=4 e |
— | CreateTimer !
N |
Thing That / scheduler [ H Ky scc/“a \
creates timers i B I R 3 \
I every =l
: minute | /.:- GetTimers I \timefs bucke_‘ts
____J___ ________ 1 hello” Q
. 1 I . /
| pending | DeleteTimer 'l \\ 12:50:10 7
1l "hello” @ ' /!%' _______ 4
)/ 13.50:10 \ 1] (17
48 : N i 14:00
; (|| werld" e |, 12:52:12 '
omo'the_r t"\l?\g | 12:52.:12 | 3PPC
that creates \ l| _\_ _\_- | I— -—————-—7 - -
tTimers N o= - L, CreateTimer ! —P| goodbye @
b e //J 14:02:05
pe—
consumenr | el | wmers
L - ﬁ N / J
he_“o _______ 1 .
\&: DeleteTimer !
world L I

he[ lo world




| minute

scheduler

every |

pe_nding |

"he_“o" )
12:50:10

‘world” @
135212

sche,dule_r‘
r——-—-1
| every %
.
M\V\ute_J

Pe_nding

"hello”" @

"world" @

|
|
|
125010 |,
|
|
135212 |,

he_l lo world

Scyl la

~

timers

buckets

hells’ @
12:5010

13:50

—

“world” (A}
135212

14:00

"ﬁoodbyeu @
14.02:05

N




HOW TO SCALE THE SCHEDULER?
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SCYLLA SCHEMA CHANGES
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e Group by both time AND
shard
e Shrink buckets
e Shard by ID
m Each scheduler
responsible for a
range of shards
e More efficient
bookkeeping and

querying
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e Stable, unique identifier
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We've achieved full scalability!
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PERFORMANCE
CHARACTERISTICS

Simple scaling

Less susceptible to serious outage

10k timers per second per scheduler node
17k requests per second per grpc node
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e At-least-once guarantee
e Fire close-to scheduled time



CALLOUTS

e At-least-once guarantee
e Fire close-to scheduled time
e Cannot be cancelled after retrieved
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FUTURE POTENTIAL

e Open source
e Integrate more broadly
e Add features
= Cancelling timers possible always
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WHAT WE HAVE

e Store billions of timers
e Expires performantly
e Minimize data loss
e Easyintegration
e Simple scaling






