SLEEPING
AT

- LILY MARA

HUNTER LAINE

OneSignal

Lily Mara
Joel Holmes

M MANNING

WHAT WE'LL COVER

WHAT WE'LL COVER

e Motivation

WHAT WE'LL COVER

e Motivation
e Architecture

WHAT WE'LL COVER

e Motivation
e Architecture
e Performance

WHAT WE'LL COVER

e Motivation

e Architecture
e Performance
e Scaling

WHAT WE'LL COVER

e Motivation
e Architecture
e Performance
e Scaling
e Future work

ONCE UPON ATIMER

ONCE UPON ATIMER

e 2019

ONCE UPON ATIMER

e 2019
e "Journey builders" are becoming popular

JOURNEY BUILDERS

SMS: Blue,
shirt sale!

VQSL
Push: red :) / SMS: red
shirt sale! woit 2h "‘o% shirt sale!

Push: lolue_ >
shirt sale!

woat 249h

REQUIREMENTS

REQUIREMENTS

e Store millions/billions of concurrent timers

REQUIREMENTS

e Store millions/billions of concurrent timers
e Expire them performantly

REQUIREMENTS

e Store millions/billions of concurrent timers
e Expire them performantly
e Minimize data loss

REQUIREMENTS

Store millions/billions of concurrent timers
Expire them performantly

Minimize data loss

Integrate with the rest of our systems

GET IN THE
HEADSPACE

GET IN THE
HEADSPACE

e To build a timer

GET IN THE
HEADSPACE

e To build a timer
e Think like a timer

GET IN THE
HEADSPACE

e To build a timer
e Think like a timer
e Come back to the projectin a year

JUMPING FORWARD

Q12021

BUILD OR BUY

BUILD OR BUY

e Sidekiq/ RabbitMQ

BUILD OR BUY

e Sidekiq/ RabbitMQ
e General queuing systems

BUILD OR BUY

e Sidekiq/ RabbitMQ
e General queuing systems
e We didn't need all of their features

BUILD OR BUY

e Sidekiq/ RabbitMQ

e General queuing systems

e We didn't need all of their features

e We didn't believe they'd scale to our needs

BUILD OR BUY

e Sidekiq/ RabbitMQ

e General queuing systems

e We didn't need all of their features

e We didn't believe they'd scale to our needs

e Performance seemed orders of magnitude off

WE'RE BUILDING!

REQUIREMENTS

REQUIREMENTS

e Store millions/billions of concurrent timers

REQUIREMENTS

e Store millions/billions of concurrent timers
e Expire them performantly

REQUIREMENTS

e Store millions/billions of concurrent timers
e Expire them performantly
e Minimize data loss

REQUIREMENTS

Store millions/billions of concurrent timers
Expire them performantly

Minimize data loss

Integrate with the rest of our systems

EXISTING SYSTEMS

EXISTING SYSTEMS

e Rust

EXISTING SYSTEMS

e Rust
e Kafka

EXISTING SYSTEMS

e Rust
e Kafka
e GO

EXISTING SYSTEMS

e Rust
o Kafka
e GO

e oRPC

EXISTING SYSTEMS

e Rust
o Kafka
e GO
e oRPC
e Scylla (Cassandra)

INS & OUTS

Twmer

- Expir‘y Time - ‘-(pm
- Action 777

Action

Send notification
Send e_w\odl

Send SMS

Send TAM

Adek torg

[££4

NEW REQUIREMENT

GENERIC

ACTIONS

ACTIONS

e What are they?

ACTIONS

e What are they?
e Should be one option

ACTIONS

e What are they?
e Should be one option
e HTTP + JSON?

ACTIONS

e What are they?

e Should be one option
e HTTP + JSON?

e oRPC requests?

ACTIONS

e What are they?

e Should be one option
e HTTP + JSON?

e oRPC requests?

e Something async

ASYNC

Timer Expim/

0
Z
2

0
Z.

20ms

50 mS— N\

—10s

APACHE KAFKA

APACHE KAFKA

e Already used

APACHE KAFKA

e Already used
e Queueing system

APACHE KAFKA

e Already used
e Queueing system
e Not reliant on end-system performance

WHAT ABOUT THE
INPUTS?

WHAT ABOUT THE
INPUTS?

e We own the latency

WHAT ABOUT THE
INPUTS?

e We own the latency
e This can be synchronous

WHAT ABOUT THE
INPUTS?

e We own the latency
e This can be synchronous
e gRPC interface

INTERFACE

one (1) mag]c box

Tmer
- Expiry Time - Yom Action
- Action _ Top?c
- Topic . - Partition
- Partition Timer System - Dota
- Data >

my Aob
4RPC

your ;\ol:: /

Thing That [Kofko ConSumef]
Mokes Timers

INTERNALS

INTERNALS

e Store timers?

INTERNALS

e Store timers?
e Expire timers?

INTERNALS

e Store timers?
e Expire timers?
e Metrics?

TIMER EXPIRY

TIMER EXPIRY

e Write timers to Kafka

TIMER EXPIRY

o Write timers to Kafka
e Given gRPC server with storage

TIMER EXPIRY

e Write timers to Kafka
e Given gRPC server with storage
o Attempt simplicity

SIMPLE PLAN

(mogic S’tor‘aae_]é’"—'

my :\OB

/
\

\

S

SQl«e_dule,r
[t |
| every

I minute !
4

pey\dimj

hello” @
13:52:10

"world" @
13:50:12

your job

IT CAN'T BE THAT
SIMPLE

IT CAN'T BE THAT
SIMPLE

e How to represent?

IT CAN'T BE THAT
SIMPLE

e How to represent?
e Avoid double-enqueuing

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

tokio::time::sleep(Duration::from secs(60)).await;

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

for timer in timers {
if pending.insert(timer.id) {

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

IT WAS THAT SIMPLE

NUMBERS

NUMBERS

e tokio::spawn+sleep until

NUMBERS

e tokio::spawn+sleep until
e 1M timers

NUMBERS

e tokio::spawn+sleep until
e 1M timers
e 350ms

NUMBERS

e tokio::spawn+sleep until

e 1M timers
e 350ms
e 600 MB

NUMBERS

e tokio::spawn+sleep until
e 1M timers

e 350ms

e 600 MB

e "good enough”

METRICS

METRICS

e Pending timers

METRICS

e Pending timers
e Last expired

STORAGE

WHAT DO WE NEED?

WHAT DO WE NEED?

e High write throughput (100k/s)

WHAT DO WE NEED?

e High write throughput (100k/s)
» Possible but difficult with Postgres

WHAT DO WE NEED?

e High write throughput (100k/s)
» Possible but difficult with Postgres
e Simple to scale

WHAT DO WE NEED?

e High write throughput (100k/s)

» Possible but difficult with Postgres
e Simpletoscale
e Simple to maintain

WHAT DO WE NEED?

e High write throughput (100k/s)

» Possible but difficult with Postgres
e Simple to scale
e Simple to maintain

= Zero-downtime upgrades

WHAT DO WE NEED?

e High write throughput (100k/s)
» Possible but difficult with Postgres
e Simple to scale
e Simple to maintain
= Zero-downtime upgrades
e Simple queries with large result sets

END RESULT

e We picked Scylla

END RESULT

e We picked Scylla
e Queries inform data structure

DATA MODELING

DATA MODELING

e Don't ask "what are the data?"

DATA MODELING

e Don't ask "what are the data?"
e SSTables, from Cassandra

DATA MODELING

e Don't ask "what are the data?"
e SSTables, from Cassandra
e Ask "how will we access the data?"

DATA MODELING

e Don't ask "what are the data?"

e SSTables, from Cassandra

e Ask "how will we access the data?"
» Fetch all timers about to expire

WHAT'S IN A TIMER?

create table timer.timers (

expire timestamp,
data blob,

k topic string,
k partition int,

WHAT'S IN A TABLE?

WHAT'S IN A TABLE?

e Note - "Scylla" may mean "Scylla & Casandra”

WHAT'S IN A TABLE?

e Note - "Scylla" may mean "Scylla & Casandra”
e Data distributed across cluster

WHAT'S IN A TABLE?

e Note - "Scylla" may mean "Scylla & Casandra”
e Data distributed across cluster
e IN GENERAL - 1 query hits 1 node

KEYS!

KEYS!

e Primary Key - two parts

KEYS!

e Primary Key - two parts
» Partition (1+ fields) - which node?

KEYS!

e Primary Key - two parts
» Partition (1+ fields) - which node?
n Clustering (0+ fields) - where on the node?

KEYS!

e Primary Key - two parts

» Partition (1+ fields) - which node?

n Clustering (0+ fields) - where on the node?
e SELECT ... WHERE ParKey = "..."

KEYS!

e Primary Key - two parts

» Partition (1+ fields) - which node?

n Clustering (0+ fields) - where on the node?
e SELECT ... WHERE ParKey = "..."
e Gettimers about to expire

KEYS!

Primary Key - two parts

» Partition (1+ fields) - which node?

n Clustering (0+ fields) - where on the node?
SELECT ... WHERE ParKey = "..."
Get timers about to expire
Need to pre-bucket the data

BUCKETING

BUCKETING

e 16:48:30 bucketsto16:45:00

BUCKETING

e 16:48:30 bucketsto16:45:00
e Alltimers 16:45:00t016:50:00 arein the
same bucket

BUCKETING

e 16:48:30 bucketsto16:45:00

e Alltimers 16:45:00t016:50:00 arein the
same bucket

e Bucket alone cannot be Primary Key

BUCKETING

16:48:30 bucketsto16:45:00

All timers 16:45:00t016:50:00 are in the
same bucket

Bucket alone cannot be Primary Key

UUID will be clustering key

TABLE

expire timestamp,
data blob,

k topic string,
k partition int,

TABLE

id uuid,
bucket timestamp,

PRIMARY KEY (bucket, id)

QUERY

SELECT * FROM

timer.timers
WHERE bucket = "2023-09-27 16:45:00"

QUERY

WHERE bucket = "2023-09-27 16:45:00"

BUT

Now: 16:4% 16:5%
16:45 16:50 16:55
o o ® ® ®
S T e
® ® [

10 wmins

BIGGER BUT

16'qq'5q A/Oh/; 16;"’5;10 16;55;10
16:40 \ 16:45 16:50 16:55
\ (o] @ o @ ® o o
01090000009 00000909906 9—0 90 00
@ ® ®

10 wmins

QUERY BAD

e Querying the "active bucket" isn't good enough
e What buckets exist?

e What buckets fall within our lookahead window?
e Query all of those buckets

ANOTHER TABLE!

create table timer.buckets (
bucket timestamp,

PRIMARY KEY (bucket)

INSERTIONS

1 INSERT INTO timer.timers (bucket, expire, ...)
VALUES (16:40, 16:42);

INSERT INTO timer.buckets (bucket) VALUES (16:40);

QUERY PATTERN

SELECT bucket FROM timer.buckets;
=> 16:40, 16:45, 16:50, 16:55, 17:00...

QUERY PATTERN

SELECT FROM timer.timers WHERE bucket=16:40;

SELECT FROM timer.timers WHERE bucket=16:45;
SELECT FROM timer.timers WHERE bucket=16:50;
SELECT FROM timer.timers WHERE bucket=16:55;

TOGETHER

External Internal

: send "hello” to

a seyllon I

|
'topic "everts' @ : gree
| 12:50:12 Yl
thing that R) L Timers buckets
creates timers | CreateTimer T %
e hello” @ 7
'|_ _______ : \\ 13:5012 v
scheduler A GetTimers |,§‘ 1T
[— o L= 7
roT T 1 |_— _‘ world @
et ST I |17l 135210 v
L mnate | DeleteTimer ‘l’
S . - ;
YV \ goodbye’ @
Penohng _4_ - 14:.02:05

‘world” @
12:52:10

L e
ello |
125042 | ! _
|
|
|
|

JUMPING FORWARD

Q12023

JUMPING FORWARD

Q12023

e Store billions of timers

JUMPING FORWARD

Q12023

e Store billions of timers
e Expire them performantly

JUMPING FORWARD

Q12023

e Store billions of timers
e Expire them performantly
e Minimize data loss

JUMPING FORWARD

Q12023

e Store billions of timers

e Expire them performantly
e Minimize data loss

e Easily integrate

THE CASE FOR SCALING UP

THE CASE FOR SCALING UP

e 13 billion notifications a day

THE CASE FOR SCALING UP

e 13 billion notifications a day
m Retry on failure

THE CASE FOR SCALING UP

e 13 billion notifications a day
m Retry on failure
s Schedule future notifications

THE CASE FOR SCALING UP

e 13 billion notifications a day

m Retry on failure

= Schedule future notifications
e Handle more timers

JOURNEY BUILDERS

SMS: Blue,
shirt sale!

VQSL
Push: red :) / SMS: red
shirt sale! woit 29h "‘o% shirt sale!

Push: lolue_ >
shirt sale!

wot 249h

External

‘thing that
creates timers

Internal

——— — — - — - - - -
|

send "he_“o" to

consumer

l«e_l lo

world

~

‘top?c "e_ve_n‘ts"

he_“o

|
:toP?Q "eVer\‘ts" @ : arpe K SQY“O\
l 12:50:10 | |
CTTTT T T L Timers buckets
—= CreateTimer N
| _]] u
pininiuintaiel y hells7@ 12:50
,] g 12:50:10
scheduler 7, GetTimers ‘*i\
ro o ,l,,;-——/—__——'\ 1| world” @
I eVeﬁ'/ IZ/ - - - == | = 13'59\'12 1q;OO
I minute ! B . U—1" 70
L e | DeleteTimer |
- — = " 1}
|—____I.W_____| % - 300&&/@ @
| pendling | 1 14:02:05
| |
1 helle” @ |
=0. |
| 125040 |, _
: "world" e /
: 13:52:12 :
e - — o _ 1
I
kafka
——————— |
|
world | |
|

Exte_(‘nal

| serd 'hello’ to 1 cepe a seyllo
:topIc "events' @ | e __
l 12:50:10 Y) L Timers buckets
th?nfj tho\'t Il _ _ _ _ ___ i le‘e_O\te,Tlme_rl \§§ ' “ .
creates timers —t--- T hello, @ :
%_ T ! 12:5010)
scheduler | SetTimers ni* 1T
|- - - - = ~ 0 1}
re ! _— ~V werdd &
| every | T — — — — — — _ | — 74 14:00
| it :Z , ||| 15202
consumer k- ;[/ - | . .
_________ 300:15&/3 (A}
hello] pendling 14:02:05
|
world 1l "hello” @
L ‘| 12:50:10
|
1] “world” @
|| 13:52:12
L e - - - =
kocpk_o\ _____
: Topic "events' l,
[vello | | world ||
|

Ex’temal In‘te_mal

—,— e — — — —_—— — —

:se_nd "hello" to :
| topic "events' !

I @ 135040 | grpe
L ____—=4 e |
— | CreateTimer !
N |
Thing That / scheduler [H Ky scc/“a \
creates timers i B I R 3 \
I every =l
: minute | /.:- GetTimers I \timefs bucke_‘ts
____J___ ________ 1 hello” Q
. 1 I . /
| pending | DeleteTimer 'l \\ 12:50:10 7
1l "hello” @ ' /!%' _______ 4
)/ 13.50:10 \ 1] (17
48 : N i 14:00
; (|| werld" e |, 12:52:12 '
omo'the_r t"\l?\g | 12:52.:12 | 3PPC
that creates \ l| __ __- | I— -—————-—7 - -
tTimers N o= - L, CreateTimer ! —P| goodbye @
b e //J 14:02:05
pe—
consumenr | el | wmers
L - ﬁ N / J
he_“o _______ 1 .
\&: DeleteTimer !
world L I

he[lo world

| minute

scheduler

every |

pe_nding |

"he_“o")
12:50:10

‘world” @
135212

sche,dule_r‘
r——-—-1
| every %
.
M\V\ute_J

Pe_nding

"hello”" @

"world" @

|
|
|
125010 |,
|
|
135212 |,

he_l lo world

Scyl la

~

timers

buckets

hells’ @
12:5010

13:50

—

“world” (A}
135212

14:00

"ﬁoodbyeu @
14.02:05

N

HOW TO SCALE THE SCHEDULER?

(67roup 1 W \
Scl«\e_du le_f‘ G
*’

- e - - - — = = -

SCYLLA SCHEMA CHANGES

Sle la W

buckets
f shard 1 \ [shard 2 \ [shord 3 \
12:50 12:50 12:50
14:02 14:02 14.02
S ")

timers
([sedl N\ T gz [seds)
"hello" _ _
13:5%;0@3' oo’ @ t-shirt” @
123:50:22 13:50:01
‘world”" @
25047 bar" (2} uso‘le" e
"3oodl:t/e_") 14:02:16 14:.02:05
14:.0:57
- N |

SCYLLA SCHEMA CHANGES

4 sello ~ e Group by both time AND

buckets S h a rd
f shard 1 \ [shard 2 [shard 3
12:50 12:50 12:50
14:02 14:02 14:02
\—__ — -

tl ers
([sedl N\ T gz [seds)
"hello" _ _
13:5%;0@3' oo’ @ t-shirt” @
123:50:22 13:50:01
‘world”" @
12:50:4% o o e e
"3oodl:t/e_") 14:02:16 14:.02:05
14:.0:57
- N |

SCYLLA SCHEMA CHANGES

\

Sle la
buckets
12:50 12:50 12:50
14:.02 14:.02 14:02
\—___/ N |
timers
I'hellou @ W "
S “Poo" @ T-shirt” @
12:50:0% 12:50:22 12:50:01
‘world”" @
12:50:47 bor' @ "sale’ @
llgoodl)l/e" @ 1‘(:02:16 1‘(:02:05
14:.0:57
\L -

e Group by both time AND
shard
e Shrink buckets

SCYLLA SCHEMA CHANGES

\

seyllon
buckets
13:50 13:50 13:50
14:.02 14.02 14:02
_—___/ N |
timers
I'hellou @ W w
o “Poo” @ T-shirt” @
12:50:0% 12:50:22 13:50:01
‘world”" @
12:50:47 bor' @ "sale’ @
"3oodl;t/e_" @ 1‘(:02:16 1‘(:02:05
14:02:57
\L - J

e Group by both time AND
shard

e Shrink buckets

e Shard by ID

SCYLLA SCHEMA CHANGES

seyllo A
buckets
12:50 12:50 12:50
14:02 14:02 14:02
\—______/ N —
timers
Ilhe“ou @ m)
o "Poo’ @ AT 2
BEOE 12:50:2.2 12:50:01
‘world”" @
13:50:4% bor' @ "sale’ @
"3oodl;t/e_" @ 1‘(:02:16 1‘(:02:05
14:02:57
L - @~ J)

e Group by both time AND
shard
e Shrink buckets
e Shard by ID
m Each scheduler
responsible for a
range of shards

SCYLLA SCHEMA CHANGES

seyllo A
buckets
12:50 12:50 12:50
14:02 14:02 14:02
\—______/ N —
timers
I'hellou @ W w
o "Poo’ @ AT 2
BEOE 12:50:2.2 12:50:01
‘world”" @
13:50:4% bor' @ "sale’ @
"3oodl;t/e_" @ 1‘(:02:16 1‘(:02:05
14:02:57
L - @~ J)

e Group by both time AND
shard
e Shrink buckets
e Shard by ID
m Each scheduler
responsible for a
range of shards
e More efficient
bookkeeping and

querying

GET TIMERS REQUEST

SUCCESS! (ALMOST

“

67e't1—3me_r$

Before: 13:51
Shard: 1

K Scy“a
buckets
(shard 1 \ (shard 2 \ (shard 3 }
13:50 \ 12:50 12:50
14:02 14:02 14:02
timers
N “$h|‘l}\r:1 ! J (shard 2 \ (shard 3 \
hello @ . = = =
\ 12:50:0% |4 foo' @ t-shirt” @
12:50:22 12:50:01
‘world”" @ %
13-50-(4? 0 m " "
boar) SoJe e
”300451/8" a 14:02:16 14:02:05
14:.02:57
\L \ J L J

~

IDENTITY THEFT

SQhe_clule,r‘ 1

r;v_er_y_ l\

| ' minute ! ‘ \
;[/ N timers for

—————————— I scheduler 1,

: Pe—“d;“ﬂ | please
I u] ! 3FPQ
| hello @ [
| 12:50:10 : FTTTTTTT T
' | | CreateTimer
L--m o= | |
- - - === [
scheduler 2 | GetTimers |
| eve I - - — - — - 4
.) [scheduler 1 /// F—————— = |
L N timers for
| every I% scheduler 1, : DeleteTimer :
- \ |+ T'i/ujf' d ~ please Ve — == —

r— " "« ~ — "I

iy l |

! oY n : hello" @ |
————————— | 12:50:10 :
l |

STATEFUL SET

STATEFUL SET

e Stable, unique identifier

STATEFUL SET

e Stable, unique identifier

= SC
= SC
= SC
= SC

NeC
NeC
NeC

NeC

u

u
u
u

er-0
er-1
er-2

er-3...

e e I send hello” to : gree
:‘topic ‘events” @ | Fmmm———— 1
| 12:50:10 ! | dreat |
thing that e : res e’n""e’]
creates Timers _a -, - Scy“a N
P GetTimers ;: GetTimers ,'
P ~ Np------- ‘7,\ buckets
I ’A “““““ I ([shard 1) [shard 2 [shard 3
e)/ DeleteTmer |]
i
| every e ' ; , .
I minute ;és 13-50 13-50 13-50
e N
gree ———1
—————————— 1
| - /|| - _____
| perding -) 14:02 14:02 14:02
| | CreateTimer |
: hello” @ : \l________l \ / \ / \)
: 12:50:.0% | :___—_.—_—L/ "
| - - | , GetTimers = \)\ \
|| “werld” @ : Y~ - = \ timers ~
I\|_ms04?), oo . —
L] = DeleteTimer : il shard 2
| hello @_ 0 [
E& 12:50:0% foo’ @ k
scheduler - 13:50:22
r——"-""1 = < " 0
| every | o world" @
:~ f‘"‘“_tf . 12:50:47 o’ @ "sale’ @
consumer -\L "goodbye’ @ 14:02:16 14:02:05
~ - ||t - 14:.02:57
\ pendling : scheduler - 3 5
— i ! \L)
V| 5022 |
POO] :
e e e o ———— 4
12:50:01
kafka
P

w " 1

topic events |
I

I

|

[t-shiet | [ello || #oo] wedd |

VS TR &1L VAL | Send "l‘\e“O" to I| Sl‘"Pc
:‘topic ‘events” @ | Fmmm———— 1
— : 12:50:10 : :Crea‘te’rimet‘: \
'thimj Vot | 00 ool | e e — = -
creates timers _ e — ————— = 4 K SQVHO\
P GetTimers (| GetTimers |
Before: 1251 AR A;i\ buckets
(R ‘ Coed 1 (Sedd)) ((Sed)
scheduler - 1// : DeleteTimer : —
_____ 1 '
| every memmoe | 13:50 13:50 13:50
I mi !
L w“‘:t_e_é N
gree —_—1
__________ . '
| perding roooooo | 14:02 14:02 14:02
| ! | CreateTimer :
] " " \
hello” @ ! e an \ / \ J . /
I
|| 1250:0% ||, \:- ——————— 1| \ \
! - [| GetTimers T~ \ \ Y
(] werld” @ ! /R S timers
12:50:4% ———————
: : \'blt'r Il shard 1 shord 2
L === — = —q Leletelmer "h “0.,@
e i < “Roo") k
&: 12:50:.0%)
scheduler - T e 210k
re- - - wor
| every Before E0)- = " u
| incte : 12:50:47 e S‘?(l)i | (%
S "goodbye’ @ 14:02.16 14:02:
Sonstmer 14:02:57
- — e y - scheduler - 3 e
t-shirt pending { \ /
- I
. I " " : k J
e |
|| @502 ||
foo I |
e e e o ———— 4
kafka
P

w " 1

topic events |
I

I

|

[t-shiet | [ello || #oo] wedd |

We've achieved full scalability!

PERFORMANCE
CHARACTERISTICS

PERFORMANCE
CHARACTERISTICS

e Simple scaling

PERFORMANCE
CHARACTERISTICS

e Simple scaling
e Less susceptible to serious outage

PERFORMANCE
CHARACTERISTICS

e Simple scaling
e Less susceptible to serious outage
e 10k timers per second per scheduler node

PERFORMANCE
CHARACTERISTICS

Simple scaling

Less susceptible to serious outage

10k timers per second per scheduler node
17k requests per second per grpc node

CALLOUTS

CALLOUTS

e At-least-once guarantee

CALLOUTS

e At-least-once guarantee
e Fire close-to scheduled time

CALLOUTS

e At-least-once guarantee
e Fire close-to scheduled time
e Cannot be cancelled after retrieved

FUTURE POTENTIAL

FUTURE POTENTIAL

e Open source

FUTURE POTENTIAL

e Open source
e Integrate more broadly

FUTURE POTENTIAL

e Open source
e Integrate more broadly
e Add features

FUTURE POTENTIAL

e Open source
e Integrate more broadly
e Add features
= Cancelling timers possible always

WHAT WE HAVE

WHAT WE HAVE

e Store billions of timers

WHAT WE HAVE

e Store billions of timers
e Expires performantly

WHAT WE HAVE

e Store billions of timers
e Expires performantly
e Minimize data loss

WHAT WE HAVE

e Store billions of timers
e Expires performantly
e Minimize data loss

e Easy integration

WHAT WE HAVE

e Store billions of timers
e Expires performantly
e Minimize data loss
e Easyintegration
e Simple scaling

