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ONCE UPON A TIME
8B notifications/day
10 backend engineers
Make simplifying assumptions



Mobile Push
SMS Web push

Subscription A: account-type=VIP

Subscription B: account-type=VIP

Subscription C: account-type=user



API
PUT https://onesignal.com/api/v1/players/{SUBSCRIPTION_ID}
{
     "app_id": "{APP_ID}",
     "tags": {
          "first_name": "Jon",
          "last_name": "Smith",
     }
}



PUT /api/v1/players/A UPDATE id=A

OK
200 OK
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Metric: Lag=4





KAFKA PIPELINE
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PARTITION
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ROUND-ROBIN
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CONCURRENT WRITES
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ISSUES
Inflexible
Kafka repartitioning



REPARTITIONING
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SUBPARTITION PROCESSING
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COMMIT(3)
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SOLUTION
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CONCESSION
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messages will be replayed



CONCESSION
at-least-once delivery
messages will be replayed
design around this
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REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue
consumer concurrency via partitioning and
subpartitioning
consumer performing PG writes



POSTGRES WRITES



CONCURRENCY
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CONCURRENCY
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GOALS
maximize concurrency
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GOALS
maximize concurrency
minimize contention
no concurrent updates to single row



SUBPARTITION QUEUES
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ALL TOGETHER
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ANOTHER ISSUE
In-memory queuing
Memory overloads



ANOTHER ISSUE
In-memory queuing
Memory overloads
Cap on messages in memory



SUDDENLY
everything was fine



SUDDENLY
everything was fine

until it wasn't
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OBSERVABILITY



OBSERVABILITY
Only metrics
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OBSERVABILITY
Only metrics
Unstructured logs on boxes
I insisted on getting centralized logging





{
  "app_id": "9...",
  "subscription_id": "6...",
  "sql": "UPDATE ... WHERE id=6...",
  "hostname": "consumer-01"
}



Count

clothes.ly

next largest customer

other customers



Count

other clothes.ly

next largest customer

other customers

clothes.ly S1
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WHAT?
Tons of individual updates



WHAT?
Tons of individual updates
Incompatible updates



WHAT?
Tons of individual updates
Incompatible updates
Location moving all over



location color level device type identifier
Chicago

NYC

Tokyo

Red VIP email admin@clothes.ly

Blue User email admin@clothes.ly

Pink Anon email admin@clothes.ly

👀



ONESIGNAL



ONESIGNAL
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ONESIGNAL
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Omnichannel messaging



ONESIGNAL
More than just push
Omnichannel messaging
Push, email, sms, in-app



setEmail



setEmail

Subscription A
Push

setEmail("user@website.com");

Subscription Z: Email (user@website.com)

Browser

Subscription A
Push

Subscription Z
Email

Browser

Subscription A: Web Push parent: Z



COUNT(*) ...
5,000,000

COUNT(*) ... WHERE parent_player_id=S1
4,800,000



S1 Update

Other Update



WHY IS THAT A
PROBLEM?
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OK BUT IN REALITY
IT WAS WORSE
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WHAT DID WE DO?
Skip the updates
Fix message limiting
Limit subscription linking
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WHAT DID WE
LEARN?

Shift API write workloads to async workers
Benefits of subpartition queueing
Struggles of subpartition queuing
Centralized observability
Customers are so creative
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