
THE ONE ABOUT
KAFKA
LILY MARA

ONCE UPON A TIME

ONCE UPON A TIME
8B notifications/day

ONCE UPON A TIME
8B notifications/day
10 backend engineers

ONCE UPON A TIME
8B notifications/day
10 backend engineers
Make simplifying assumptions

Mobile Push
SMS Web push

Subscription A: account-type=VIP

Subscription B: account-type=VIP

Subscription C: account-type=user

API
PUT https://onesignal.com/api/v1/players/{SUBSCRIPTION_ID}
{
 "app_id": "{APP_ID}",
 "tags": {
 "first_name": "Jon",
 "last_name": "Smith",
 }
}

PUT /api/v1/players/A UPDATE id=A

OK
200 OK

😭

QUEUE

QUEUE
Queue

Enqu
eu

e Dequeue

QUEUE
Queue

Enqu
eu

e Dequeue

Metric: Lag=4

KAFKA PIPELINE
Topic

.send()

.po
ll()

4 3 2 1 0 0

Consumer A
Current: 0

Consumer A
Current: 1.commit(0)

Producer

CONSUMER

Topic

.send()

.po
ll()

4 3 2 1 0

0

Consumer A
Current: 0

Consumer B
Current: 2

2

.poll()

Consumer A
Current: 1.commit(0)

Consumer B
Current: 3.commit(2)

Producer

PARTITION

Partition 0

.send(0)

4 3 2 1 0

Topic

Partition 1

2 1 0

Consumer A

0

2

P1: 2

P0: 1
Consumer A

2

P1: 2

P0: 2

.commit(0, 1)

ROUND-ROBIN

2 1 0

2 1 0

2 1 0

P0

P1

P2

EXPLICIT

2 1 0

2 1 0

2 1 0

P0

P1

P2

CONCURRENT WRITES

2 1 0

2 1 0

2 1 0

P0

P1

P2

2 1 0

P3

ISSUES

ISSUES
Inflexible

ISSUES
Inflexible
Kafka repartitioning

REPARTITIONING

2 1 0

2 1 0

2 1 0

P0

P1

P2

2 1 0

P3

1 0

1 0

1 0

P0

P1

P2

1 0

P3

Topic - 4 partitions

Topic - 6 partitions

1 0

P4

1 0

P5

SUBPARTITION
PROCESSING

SUBPARTITION PROCESSING

Partition 0

4 3 2 1 0

Topic

Partition 1

Consumer

0

1

W1

W0

Partition 0

2

W2

3

W3

Partition 1

ISSUE

0

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

?????

Consumer

COMMIT(0)

0

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

COMMIT

COMPLETE

Consumer

COMMIT(3)

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

COMMIT

COMPLETE

Consumer

SOLUTION

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Commit

buffer

Consumer

0

1

2

COMMIT(0)

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

Commit

buffer

Consumer

1

2
COMPLETE

COMMIT(3)

W1

W0

Partition 0

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

Commit

buffer

Consumer

1

2
COMPLETE

CONCESSION

CONCESSION
at-least-once delivery

CONCESSION
at-least-once delivery
messages will be replayed

CONCESSION
at-least-once delivery
messages will be replayed
design around this

REVIEW

REVIEW
kafka topic

REVIEW
kafka topic
contains partitions - queues

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue
consumer concurrency via partitioning and
subpartitioning

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue
consumer concurrency via partitioning and
subpartitioning
consumer performing PG writes

POSTGRES WRITES

CONCURRENCY

SET a=10

SET a=20

W0

Partition 0

W2

SET a=10

0

SET a=20

1
a=20

CONCURRENCY

SET a=10

W0

Partition 0

W2

SET a=10

0
a=20

a=10

GOALS

GOALS
maximize concurrency

GOALS
maximize concurrency
minimize contention

GOALS
maximize concurrency
minimize contention
no concurrent updates to single row

SUBPARTITION QUEUES

4 3 2 1 0

3 2 0

4 1

real queue

blue queue

red queue

red processor

blue processor

1

0

ALL TOGETHER
Partition 0

.send(0)

4 3 2 1 0

Producer

Topic

Partition 1

2 1 0

Consumer

2 0

1

3

4

blue processor

0

red processor

1

1

2 0

orange processor

1

green processor

0

P0

P1

Commit buffer

Commit buffer

.send(1)

ANOTHER ISSUE

ANOTHER ISSUE
In-memory queuing

ANOTHER ISSUE
In-memory queuing
Memory overloads

ANOTHER ISSUE
In-memory queuing
Memory overloads
Cap on messages in memory

SUDDENLY
everything was fine

SUDDENLY
everything was fine

until it wasn't

🚨🚨🚨

LAG

time

fine not fine

??

CPU

time

CPU

time

IDLE

CONNS

time

IDLE

CONNS

time

EXPECTATION

REALITY

OBSERVABILITY

OBSERVABILITY
Only metrics

OBSERVABILITY
Only metrics
Unstructured logs on boxes

OBSERVABILITY
Only metrics
Unstructured logs on boxes
I insisted on getting centralized logging

{
 "app_id": "9...",
 "subscription_id": "6...",
 "sql": "UPDATE ... WHERE id=6...",
 "hostname": "consumer-01"
}

Count

clothes.ly

next largest customer

other customers

Count

other clothes.ly

next largest customer

other customers

clothes.ly S1

WHAT?

WHAT?
Tons of individual updates

WHAT?
Tons of individual updates
Incompatible updates

WHAT?
Tons of individual updates
Incompatible updates
Location moving all over

location color level device type identifier
Chicago

NYC

Tokyo

Red VIP email admin@clothes.ly

Blue User email admin@clothes.ly

Pink Anon email admin@clothes.ly

👀

ONESIGNAL

ONESIGNAL
More than just push

ONESIGNAL
More than just push
Omnichannel messaging

ONESIGNAL
More than just push
Omnichannel messaging
Push, email, sms, in-app

setEmail

setEmail

Subscription A
Push

setEmail("user@website.com");

Subscription Z: Email (user@website.com)

Browser

Subscription A
Push

Subscription Z
Email

Browser

Subscription A: Web Push parent: Z

COUNT(*) ...
5,000,000

COUNT(*) ... WHERE parent_player_id=S1
4,800,000

S1 Update

Other Update

WHY IS THAT A
PROBLEM?

Q0

Q1

Q2

Q0

Q1

Q2

OK BUT IN REALITY
IT WAS WORSE

WHAT DID WE DO?

WHAT DID WE DO?
Skip the updates

WHAT DID WE DO?
Skip the updates
Fix message limiting

WHAT DID WE DO?
Skip the updates
Fix message limiting
Limit subscription linking

WHAT DID WE
LEARN?

WHAT DID WE
LEARN?

Shift API write workloads to async workers

WHAT DID WE
LEARN?

Shift API write workloads to async workers
Benefits of subpartition queueing

WHAT DID WE
LEARN?

Shift API write workloads to async workers
Benefits of subpartition queueing
Struggles of subpartition queuing

WHAT DID WE
LEARN?

Shift API write workloads to async workers
Benefits of subpartition queueing
Struggles of subpartition queuing
Centralized observability

WHAT DID WE
LEARN?

Shift API write workloads to async workers
Benefits of subpartition queueing
Struggles of subpartition queuing
Centralized observability
Customers are so creative

LILYMARA.XYZ

